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A quantitative two-dimensional theoretical model is developed to describe the 
movement of water and salt along the long narrow extracellular channels which 
appear to be a common structural feature of all epithelial membranes. This 
study examines the transport behaviour of both open and closed membrane 
systems as a function of the geometric specialization of the channel and the 
active transport site location under the influence of three driving forces: trans- 
membrane osmotic and hydrodynamic pressure differentials and active transport. 
The previous one-dimensional hydrodynamic model of Diamond & Bossert (1967) 
and Segel(l970) was confined to closed channel systems such as the gall bladder 
in which the only mechanism for water movement is local osmosis due to active 
transport. 

Approximate analytical solutions are presented for long constant-area open 
channels in which the active transport sites have been idealized as point solute 
sources. A streamwise co-ordinate straining technique has been used in these 
solutions to describe the nonlinear effects of convection over long distances. 
Closed-form solutions are also presented for the pressure and solute concentration 
distributions within simplified models of channel constrictions with varying 
degrees of occlusion. 

Numerical results of the model have been compared with Cole’s (1961, 1962) 
in vivo and in vitro experiments on the rabbit ciliary body. Satisfying agreement 
with the measured values of the solute and water fluxes has been obtained for 
both the living eye and the excised ciliary body. These results strongly suggest 
that the formation of aqueous humour in the rabbit is a pressure-dependent 
process in which local osmosis due to active transport accounts for only one-third 
of the total aqueous flow. The model has also been applied to the gall bladder 
epithelium using more general boundary conditions than allowed for in the 
model of Diamond & Bossert. New solutions yielding a vanishing diffusional flux 
at  the channel exit were obtained. However, the model, like that of Diamond & 
Bossert, does not provide a rational explanation as to how the water in the cell 
interior is replenished. 
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1. Background physiology 
Epithelial membranes have long been of interest to physiologists and the 

medical profession because of their widespread occurrence in human and animal 
organs and because of their intriguing ability to transport water and solute 
between bathing solutions which are either isotonic or have hydrostatic and 
electrochemical gradients counter to the direction of flow. Such cell layers are 
present in the ciliary processes of the eye, the gall bladder, the renal proximal 
tubule, the intracellular canaliculi of the small intestine, the avian salt gland, 
frog skin and numerous other animal and human organs. The primary emphasis 
of the present paper is the development of a mathematical model for porous 
epithelia with pressure filtration and active transport, and its application, in 
particular, to the ciliary body epithelium. Model predictions for the water and 
solute fluxes are in good quantitative agreement with Cole’s (1961, 1962) de- 
tailed measurements of the transport of aqueous humour in both living cat and 
rabbit eyes and in the excised ciliary body. For tight juncture or non-porous 
epithelia Diamond & Bossert (1967, hereafter referred to as DB) have formulated 
an ingenious mathematical model to describe the standing-gradient osmotic flow 
established when there is no filtration. This model has provided valuable insight 
in explaining Diamond’s (1964) measurements of isotonic transport in the gall 
bladder. The present model has also been applied to the gall bladder using more 
general boundary and initial conditions for the extracellular channels than pre- 
viously considered in DB. A new family of solutions permitting a vanishing 
concentration gradient a t  the channel exit was discovered but the results, 
like those reported in DB, do not offer a satisfactory explanation as to how the 
water in the cell interior is replenished. 

Figure 1 is a schematic diagram taken from Diamond & Tormey (1 966) and 
shows what one would observe in an electron micrograph of the gall bladder 
epithelium. This membrane is a simple monolayer. The movement of water and 
salt across the membrane from the lumen or gall bladder sac is assumed to occur 
via tortuous extracellular channels which are closed at the lumenal end by 
junctional complexes, or terminal bars, These complexes are assumed to form 
a solute and watertight seal. The energy for the water and solute movement is 
derived from metabolically linked ion pumps or secretory sites that histochemical 
studies show to be located along the intercellular membranes that form the 
boundaries of the extracellular channels. In  the gall bladder the active transport 
of chloride ions is accompanied by an equal movement of sodium ions to maintain 
electroneutrality. In  other epithelial cell layers the movement of the anion or 
cation may be partially or totally inhibited. The pump then acts as a battery 
which produces charge separation and a potential difference across the membrane. 

The conceptual basis for the standing-gradient osmotic model is that sodium 
and chloride ions are actively pumped into the extracellular channels near their 
closed end from secretory sites located on the intercellular membranes. The local 
osmotic gradient established by this pumping action draws water passively from 
the cell interior into the channel. To conserve mass, both water and solute are 
forced out of the open end of the channel because of the build up of pressure at  the 
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FIGURE 1. Schematic diagram of gall bladder epithelial membrane 
(based on Diamond & Tormey 1966). 

closed end. For steady-state operation both the water and salt are replenished 
from the inner bathing solution in the lumen. The effluent a t  the channel exit 
can by hypertonic, isotonic or hypotonic with respect to the lumenal fluid. The 
intriguing feature of gall bladder transport is that, over a wide concentration 
range, the exuded fluid is isotonic with the salt solution in ihe lumen and that 
transport occurs in the absence of a transmembrane pressure differential, see 
Diamond (1964). Other membranes, such as the avian salt gland, teleost intestine 
and the ciliary processes transport a slightly hypertonic fluid. 

The mathematical model developed in DB to describe the above behaviour 
treats the extracellular channel as a one-dimensional flow in a constant-area 
cylindrical pore of circular cross-section. Both the solute and total mass are 
conserved in the channel interior, while the lateral boundary conditions allow 
for active transport of salt and passive movement of water, but not salt, across 
the intercellular membranes. Both the water and solute fluxes at the closed end 
(initial station) are zero while the concentration C,, in the cell interior is assumed 
well mixed and hence uniform. The boundary-value problem just described is 
not unique since the initial concentration C,(O) can take on any value. In DB, 
C,(o) is uniquely determined for a channel of given length L by requiring that 
the dimensionless exit concentration C,(L) = 1, that is, that the channel effluent 
should be isotonic with the solution in the cell interior. This is one of the weak- 
nesses of the DB model since in reality C,(L) can have any value. It is neither the 
concentration of a well stirred outer bathing solution (a concentration boundary 
layer could exist) or the concentration that would be measured if the effluent 
was allowed to drip off the gall bladder sac and be collected in a beaker. The 
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latter concentration is given by Q,(L)/Q(L), where Q,(L) and Q(L) are the total 
solute and water fluxes at the channel exit; QJL) includes both a convective and 
a diffusional component unless dC,(L)/dx = 0. Therefore, in specifying CJL)  the 
channel flow behaviour is constrained unnecessarily. For this reason no exit 
boundary condition is prescribed in the present study but rather C,(O) is varied 
as a free parameter, each assumed initial concentration yielding a different solu- 
tion. We shall observe later that this extra degree of freedom leads to a new family 
of solutions that is not contained in the DB analysis. 

The fundamental question that is not answered by the standing-gradient 
osmotic model at present is how the water in the cell interior is replenished. 
It would seem reasonable to expect this water to be derived from the lumenal 
fluid, the transport occurring through a local osmotic gradient at the inner 
membrane. This requirement is not satisfied by the DB model since the osmolarity 
of the lumenal fluid and that in the cell interior are assumed equal. For self 
consistency the condition of isotonic transport in Diamond’s (1964) experiments 
would appear to require that the concentration of the lumenal fluid be hypotonic 
relative- to the solution in the cell interior and isotonic with respect to both the 
channel effluent and the outer bathing solution. The latter requires that a con- 
centration boundary layer should not exist at  the channel exit and hence that 
dC,(L)/dx = 0. Thus, in contrast to Diamond & Bossert, we ask whether it is 
possible for a finite-length channel to have an effluent which is hypotonic relative 
to the cell interior solution and at  the same time have a vanishing gradient at  
the exit plane. Approximate analytic solutions to the equations and boundary 
conditions in DB based on a small parameter expansion have been presented by 
Segel (1970). The governing equations are non-dimensionalized in a manner 
similar to that presented here and the basic dimensionless groupings that 
characterize the DB model are derived. These solutions compare well with 
numerical results of DB over most of the anticipated range of values for the 
membrane parameters. 

In  contrast to the relatively simple gall bladder monolayer depicted in figure I ,  
figure 2 shows schematically what one would observe in an electron micrograph 
of the considerably more complex epithelium in the ciliary processes of the eye. 
This membrane secretes a slightly hypertonic salt solution called aqueous humour 
into the posterior chamber behind the lens at  a relatively high rate which ranges 
from 0.4 to 3p1 min-l for human and cat’s eyes respectively. The membrane 
is a dual cell layer comprising pigmented and non-pigmented cells. While the 
details in the ultrastucture of the membrane are not as well documented as for 
the gall bladder, there is a significant body of evidence suggesting that the 
extracellular channels provide a direct link between the inner (stromal) and 
outer (posterior chamber) fluids, but contain partially occluded zones whose 
physiological function is not understood. The apical infoldings shown in the 
sketch are actually interface projections of adjacent cells above and below the 
plane of the micrograph. Histochemical studies of ATPase activity show that 
active transport sites are located largely in the lateral infoldings of the non- 
pigmented cell layer. Thus, the position of the secretory sites relative to the 
channel exit is just the opposite of that in the gall bladder. 
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FIGURE 2. Schematic diagram of ciliary body epithelial membrane showing: (a) extra- 
cellular channels, (b )  pigmented layer, (c) non-pigmented layer, ( d )  stromal fluid, 
( e )  posterior chamber fluid, (f) cell nuclei, ( 9 )  mitochondria, (h)  desmosomes, (i) partially 
occluded zones, ( j )  red blood cell, (Ic) proposed secretory site based on ATPase aotivity, 
( I )  lateral infoldings, (m) apical infoldings. 

I n  the absence of junctional complexes both water and solute will have finite 
fluxes at the channel entrance. Excluding electrical effects, two additional driving 
forces for the channel flow must be considered; these were not present in the 
standing-gradient osmotic model for the gall bladder. Thus, three driving forces 
of non-electrical origin can be anticipated to contribute to the total water and 
solute movement in porous epithelia with secretory sites: active transport due 
to the ion pump (local osmosis), concentration difference between inner and 
outer bathing solutions (osmosis), and filtration due to the hydrodynamic 
pressure difference between the interstitial pressure in the stromal fluid and the 
intraocular pressure in the posterior chamber. 

One important and heretofore unexplained feature of ciliary body transport 
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which the present model will attempt to answer is the large and disproportionate 
difference in the measured water and solute fluxes in living and excised eyes of 
both the cat and rabbit. In  the experiments of Cole (1961, 1962), for example, 
the measured aqueous flux in vivo was five times greater than that in excised 
preparations, while the sodium flux in vivo was only 50 yo greater than that in 
the preparation. In  addition, active transport accounted for all of the sodium 
flux in the excised preparation while accounting for only 30 yo in vivo. 

The mathematical model for the extracellular channel developed by the 
authors contains two fundamental generalizations of the basic DB model. One 
is the introduction of a new equation, a momentum conservation equation for 
bulk fluid movement; the second is the treatment of the boundary conditions 
at  the channel entrance and exit. The initial conditions for both the bulk velocity 
and concentration gradient are both unknown in contrast to the DB standing- 
gradient model, where they are assumed to be zero. In  their place the two new 
driving forces, pressure filtration and osmosis, require more difficult split 
boundary conditions for the transmembrane pressure and concentration dif- 
ference respectively. The present model also contains three refinements of in- 
terest: the use of a two-dimensional velocity profile description, instead of the 
uniform slug profile of DB, to describe the shearing stress due to the velocity 
gradient at the lateral boundaries; the treatment of variable-area channels 
including analytic solutions for some simple constriction geometries; and the 
introduction of two-dimensional concentration profiles so that the instantaneous 
mixing hypothesis can be relaxed for channels where L/h is not 9 1. 

Section 2 presents the formulation of the pertinent conservation relations for 
the channel flow. Section 3 describes some approximate analytic solutions for 
constant-area open channels with combined active transport and filtration. The 
numerical solutions are presented in § $ 4  and 5 for closed and open channels 
respectively. Section 6 gives a simplified analytical treatment of the effect of 
partially occluded regions. 

2. Mathematical model 
In  this section we shall formulate the mathematical boundary-value problem 

that describes the transport phenomena occurring in the mathematical model 
of the generalized electroneutral extracellular channel shown schematically in 
figure 3. We wish to determine the various velocity, solute concentration and 
pressure fields that can emerge when varied boundary conditions are applied at  
the channel ends and along the intercellular membranes which form the lateral 
walls of the channel. The fluid in the channel is assumed to be a two-species 
continuum of solute and solvent and to have two-dimensional field properties. 
The desired field descriptions could be obtained from the well-known partial 
differential equations for overall continuity, conservation of solute and the 
Navier-Stokes momentum equation. The use of such a system of exact equations 
involves, however, a degree of mathematical complexity which in light of the 
present status of our understanding of the relevant physiological phenomena on 
a molecular level does not seem justified. Accordingly, we shall develop instead 
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FIGURE 3. Generalized extracellular channel model. 

a simplified description using integral techniques that will enable us to reduce 
the conservation relations for the channel to a system of ordinary differential 
equations satisfying appropriate boundary conditions. This approach permits 
us to retain an approximate two-dimensional description of the velocity and 
solute concentration fields, and, therefore, allows US to study the shear-stress 
distribution and the mixing normal to the lateral boundaries of the channel. 

For the aforementioned purposes the channel is divided into a series of 
infinitesimal control volume elements of length Ax, unit depth and height h, 
which is assumed to be a slowly varying function of the streamwise co-ordinate x. 
An active solute flux and a passive water flux are assumed to enter the volume 
element symmetrically across the lateral boundaries. 

2.1. Overall continuity equation 

Conservation of total mass within the differential control volume of length Ax 
requires that the net mass flux of solute, corresponding to subscripts, and solvent, 
corresponding to subscript w, into the differential control volume be zero. 
Therefore 

+&h(.Z+AZ) 

- - g h ( Z f A X )  
( P S ~ S + P W ~ W )  dylz=z+Az 

+[N(x)+F,+F,]Ax = 0, (2.1) 

where N ( x )  is the total active solute mass flux per unit length and depth entering 
a symmetrical channel from the active transport sites, Fw is the total passive 
flux of water crossing the two lateral membranes owing to the local osmotic 
gradient and the rest of the notation is standard. The intercellular membranes 
are assumed, as in DB, to be semi-permeable, although the authors believe that 
this condition needs to be examined more critically, at  least for the gall bladder. 
Thus, the passive solute flux Fs will be neglected. 

The local mass average velocity u of the two-species system and the bulk 
density p are defined by 

-1 ( P S U ’ S + P W U W )  dYlZ==Z l++h(x) -&(d 

u = (P ,ZL, fPwUw)/P,  P = P S + P W .  
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Using these definitions, dividing (2.1) by Ax and taking the limit as Ax -+ 0, we 
obtain 

The bulk fluid density is related to the solute molar concentration C, by 

P = [Ms- (E/G) %lQs+K/E, 
where M is the molecular weight and 7 the specific molar volume. As typical 
solute concentrations for the biological systems considered are of the order of 
2 x moles/ml the bulk fluid density is nearly independent of solute concentra- 
tion. If an integral average velocity is defined as 

and p assumed constant, the overall continuity equation can be written in terms 
of this integral property as 

The passive water flux across an isothermal semi-permeable membrane separating 
two non-isotonic solute bathing solutions can be linearly related to the solute 
concentration difference across the membrane if the hydrostatic pressure dif- 
ferential across the membrane is not excessively large and if the concentrations 
of solute in the bathing solutions are low. Both these conditions are met in normal 
biological membranes. Equation (2.3) is therefore written as 

p d(zch)/dx = N ( x )  + Pw. (2.3) 

p d(Zh)/dx = N(x) + 2PWSC,, (2.4) 

where P, is a water permeability coefficient for the lateral membrane and 
SC, = C, - Cs, is the local discontinuity in solute concentration across the inter- 
cellular membrane, C,, and C,, being the solute concentrations at  the membrane 
wall within the channel and in the cell interior respectively. 

2.2. Conservation of solute equation 

The derivation of the solute conservation relation for the differential control 
volume closely parallels that just performed for total mass conservation. The 
counterpart of ( 2 . 2 )  is obtained by replacing pu by the solute flux p,u,. Re- 
quiring F' = 0 and taking the limit as Ax + 0 yields 

The integrand of (2.5) can be represented as a sum of convective and diffusive 
solute fluxes by defining a diffusive streamwise solute flux Ax relative to the 
mass average velocity u : 

Equation ( 2 . 5 )  then becomes 
Jsx = PAUS - a)- 
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An integral average convective solute flux C z  and an integral average stream- 
wise diffusive flux are now defined as 

If pressure diffusion effects are neglected, the local streamwise diffusive flux 
is linearly related to the streamwise solute concentration gradient by 

where D is the mass diffusivity for the solute. 

the solute conservation equation (2.6) as 
Using the above definitions of the integral average properties, we can write 

a -  a -  
ax ax 

M,- (Csuh) +- (Jsx h) = N ( x ) .  

2.3. Momentum equation 

An order-of-magnitude analysis of the steady-state Navier-Stokes momentum 
equations shows that these equations can be approximated by those for a quasi- 
unidirectional flow field provided that (pUoh,/p)a < 1 and h,/L < 1, where U, 
is the characteristic streamwise velocity component, ho and L are the charac- 
teristic channel height and length respectively, a is a characteristic streamline 
slope andp is the fluid viscosity. This condition is similar to that used in lubrica- 
tion theory, where the usual Reynolds number is modified to take into account 
the small streamline inclination at  boundaries. In  the present context a must 
be generalized to include the effect of passive water movement and secretion 
at the channel boundaries. The above conditions are satisfied under most circum- 
stances for extracelluIar channel transport with the possible exception of regions 
in close proximity to stagnation points within the channel. One would expect 
such regions of deviation from unidirectional flow to be limited to axial distances 
of only several channel heights and, therefore, not to significantly affect the 
flow behaviour on the larger length scale of the channel length L. 

The momentum equation, therefore, requires that 

appy = 0,  (2.9) 

appx = p a 2 U p p .  (2.10) 

From (2.9), p = p ( x )  and (2.10) can be integrated across the channel to give 

(2.11) 

where the right-hand side represents the sum of the shearing stresses at the 
upper and lower lateral boundaries. 
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2.4. Continuity of flux at the lateral boundaries 

The diffusive flux of salt crossing the lateral boundaries of the channel must be 
consistent with the normal gradient of the solute concentration at these 
boundaries. Therefore a t  the lateral boundaries y = -t i h  

where v is the normal velocity component. The second equality on the right-hand 
side can be written in terms of the total solute and water fluxes crossing the 
upper lateral membrane : 

Pw N ( 4  Ps F w  p,(w,-w) = ----- 
P 2 P 2 '  

Combining these two results and the definition of the passive water flux 
Fw = 2Pw&Cs, one obtains 

MSCS 2MsD - = N ( x )  - - PwSCs a t  y = + ih.  
aY P W  

(2.i2) 

2.5. Dimensionless equations and parameters 

The four equations (2.4)) (2.8)) (2.11) and (2.12) constitute the basic conservation 
relations for the determination of the pressure, velocity and solute concentration 
in the channel. Additional insight into the qualitative behaviour of these equa- 
tions can be had by casting them in dimensionless form and deducing the basic 
dimensionless groups that enter into the equations and boundary conditions. To 
this end all the variables in the problem are non-dimensionalized according to 
the following relations, the dimensionless variables being denoted by asterisks: 

h" = h/ho, X* = x/ho, g* = y/ho, 

Cz = CS/C,,, U* = u/&, p" = PIP,, N" = N/N,. ] (2.13) 

The quantities h, and No represent some arbitrarily specified reference channel 
height and active solute flux, respectively, and C,, is the concentration in the 
cell interior. The previously mentioned order-of-magnitude analysis of the 
momentum equation obviates the need to introduce separate x and y co-ordinate 
scalings. V, and Po are unknown and are to be determined by an appropriate 
balancing of terms in the governing equations. This non-dimensionalization pro- 
cedure is equivalent to that performed for the DB equations by Segel (1970). 
The only difference is that Segel uses a streamwise co-ordinate scaling based on 
the secretory site length in place of the channel height. 

Substitution of the relations (2.13) into (2.4)) (2.8)) (2.11) and (2.12) yields, 
after dividing by the coefficients of the first terms on the left-hand side of the 
equations: 

(2.14) 
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(2.15) 

(2.16) 

(2.17) 

where we have assumed that pw = p ,  put pso = Cso Ms and defined the following 
non-dimensional average quantities: 

u* = quo, c ?  = ~ / c , o u o ,  

The dimensionless equations (2.14)-( 2.17) are seen to contain seven dimensionless 
coefficient groups involving the five characteristic reference quantities. The 
number of independent groups can be reduced by the proper choice of the yet 
unspecified reference quantities U, and Po. U, is chosen so that the coefficients of 
the convective and diffusive terms in (2.15) are equal. Setting Uo = D/ho reduces 
the dimensionless coefficient of the diffusive term to unity and eliminates one 
of the dimensionless groups. The choice for Po is obvious since it appears in only 
one group. Setting Po equal to pUo/ho in (2.17) eliminates one more dimensionless 
coefficient and makes the coefficients of the left- and right-hand sides of the 
equation both equal to unity. The remaining five dimensionless coefficients can 
now be redefined in terms of the three groups 

8 = pso/p, = N,h,/pD, R = Pwh,/MsD. 

Substitution of these quantities into (2.14)-( 2.17) yields 

d(G*R*)/&* = qN* + 2€R(C&- 1), (2.18) 

d -  -*b* 7 - (C,u"h*) +z* ( J ,  ) = - N * ,  
ax* € 

(2.19) 

(2.20) 

(2.21) 

The dimensionless group q~ represents the ratio of the active transport flux of 
solute to the convective flux of water, while R is a measure of the ratio of the 
passive flux of water across the lateral boundaries to the convective flux of 
solute. The third parameter e is simply a measure of the solute concentration in 
the cell interior. The boundary conditions introduce five additional dimension- 
less groups: C,*(O) = C,(O)/C,, and C,*(L) = Cs(L)/Cso, representing the solute con- 
centration at the two ends of the channel; L* = L/hO, the dimensionless channel 
length; U(O)* = U(0)/Uo, a dimensionless entrance velocity in an open geometry 
channel; and a dimensionless secretory site length AZ/ho. 
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For a given channel, we specify the values for h,, L, D, P,, p, ps, and M, and, 
thereby, the values of 7, e and R. In  a closed-geometry channel, where the mass 
flux and axial solute concentration gradient both vanish a t  the closed end, only 
C,*(L) or C,*( 0) remains as a free parameter to satisfy the boundary-value problem. 
For open-geometry channels, three degrees of freedom, U*(O), CZ(0) and C,*(L), 
are available to satisfy end conditions for solute concentration and hydrodynamic 
pressure differential. 

2.6. Velocity and concentration projiles 

Equations (2.18)-(2.21) permit us to define at most three profile coefficients for 
the description of the velocity and solute concentration fields. The fourth un- 
known function of x is the pressure. If we assume that the passive water flux 
produces only small departures from the no-slip boundary condition at the lateral 
boundaries and that the fluid viscosity is uniform across the channel, the order- 
of-magnitude analysis of the Navier-Stokes momentum equation mentioned 
previously suggests that a one-parameter Poiseuille-like parabolic velocity 
profile is appropriate for the extracellular channel flow. It is assumed, therefore, 
that the velocity profile is of the form 

u*(x,Y) = U ~ ( X )  [I - (2~* /h*)~ ] .  

This profile family satisfies (2.9), (2.10) and the no-slip boundary condition, and 
allows the centre-line velocity Urn, and hence the bulk flow, to vary as a function 
of x. 

For the solute concentration profile a two-parameter family was selected in 
terms of the dimensionless concentration (7% at the lateral boundary and the 
centre-line concentration Cfm. This permits an estimate of the rate of mixing 
across the channeland provides an independent measure of the local osmotic effect 
along the lateral boundary. A convenient profile that allows the two parameters 
C& and C,*, to vary in a continuous manner along the channel is the quadratic 
form C,* = C&+(C~m-C,T, ) [1- (2y*/h*)2] .  

2.7. Equations for the projile coefficients and pressure 

The dimensionless integral average properties can now be expressed in terms of 
the three profile coefficients introduced in the last subsection as follows: 

u* = - ;*J;' u"dy* = g J G ( X ) ,  
- 

J* - -  (2dCZm ___. +-- IdCL) . 
sx - 3 ax" 3 dx* 

Substitution of these expressions into (2.18)-(2.21) yields, with asterisks omitted, 

(2.22) 
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(2.23) 
6 d  8 d  

15dx 5dx 
--(U 0 h ) - - - ( U  Q sm sw 

7 (2.24) 

dPldX = - 8Um1h2. (2.25) 

In  presenting the results it will be convenient to refer to the dimensionless 
volume flux Q* at any station rather than Urn and to introduce a dimensionless 
total solute flux Q,* . From the three expressions for the integral average properties 

8 
(C, -Cm) = - N - ERC,(C, - 1), 

E 

above 
(2.26 u) 

where again the asterisk will be dropped from now on. 

3. Approximate analytic solutions 
Equations (2.22), (2.23), (2.24) and (2.25) provide a coupled system of one 

algebraic and three ordinary differential equations for the three profile co- 
efficients C,, C,, Urn and the pressure. Numerical solutions to various split-end- 
point boundary-value problems associated with these four equations are pre- 
sented in $3 5 and 6. Our objective here is to see if approximate analytic solutions 
can be obtained for physiologically meaningful simplifications of the system 
(2.22)-(2.25). To this end, one notes that for the extracellular channels in the 
ciliary body epithelium both 7 and R are of order or smaller, values being 
based on the best available estimates of the quantities included in these dimen- 
sionless coefficients. For these conditions the right-hand side of (2.24) is very 
much less than one and C, z C,. Thus, the necessary conditions for the validity 
of the instantaneous mixing hypothesis used in DB, in which a uniform con- 
centration profile across the channel with C, = C, = C,, is assumed, is that 
V / E ,  ER < 1.  This hypothesis is reasonable for the ciliary body and the gall bladder, 
but probably not valid for short extracellular channels such as the intracellular 
canaliculi of the small intestine. 

Two additional simplifications that greatly reduce the difficulty of the analysis 
without altering the basic physics are to let the channel height be constant 
( h  = 1)  and to treat the active transport site as a point rather than a distributed 
solute source. If this source is located at  x = L,, then for x + L, equations (2.22), 
(2.23) and (2.25) reduce to 

dQ/dx = ~ER(C, - l),  (3.1) 
d d2CS dP 
- (QC,) - 2 = 0, ax ax ax 

- = - 12Q7 

while the source strength S is defined by 

(3.4) 
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where L; -+ L$. The matching conditions at the solute source are 
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P(Ls+) = P(L,-), C,(L$) = C,(L;), Q(Ls+)-Q(L,-) = E X ,  (3.5a-c) 

( 3 . 5 4  

where the last two conditions are obtained by integrating (2.22) and (2.23) across 
the secretory site and then applying the limiting process L; + L$ for a point 
source. We observe from ( 3 . 5 4  that the secretory site produces a discontinuity 
in concentration gradient at  the source location, its magnitude to lowest order 
being proportional to the source strength. 

The boundary conditions at the channel entrance and exit are 

C,(O) = C(O), Cs(L)-C,(0) = AC, P(L) -P(0 )  = AP, (3 .5e , f , g )  

P = P(0)  at x = 0, (3.5h) 

where C(O), AC, P(0)  and AP are prescribed. 
The simplified system of equations (3.1)-(3.3) is still not easy to solve because 

of the nonlinear coupling between Q and C,. This last difficulty can be handled 
readily, however, if the concentration field is only weakly coupled to the 
filtration flow and local osmotic water movement, that is if AP and BR < 1.  
We therefore develop C,, Q and P as a double perturbation expansion in integral 
powers of eR and AP. This expansion has the effect of separating out, to first 
order, the convective corrections for the filtration flow produced by the 
externally applied pressure differential AP and the passive water movement 
across the lateral boundaries due to local osmosis. 

(3.6) 1 
C, = C(O)+&CI') +APCi? + ..., 
Q = Q(o)+~RQ~''+APQ~')+. . . ,  

P = P(O) + ERPI') +- APPi" + . . . . 
The series solutions denoted by (3.6) will not in general be uniformly valid for 

large x unless the independent variable x is strained. This complication occurs 
because the range of the x integration, which is the channel length L,  is % 1 and 
can give rise to first-order convective corrections eRCI1) and APCL') which can 
be of the =me order or larger than CCO). Inspection of (3.1)-(3.3) shows that such 
secular behaviour can be anticipated if Q > O( l), Q being of O(eRL). To avoid this 
undesirable growth of the solution (3.6) for 2 > 1 we introduce a two-parameter 
PLK type co-ordinate expansion: 

(3.7) x = X, + ERxl(xo) + APx,(x,) + . . . . 
The unknown functions Cf),  QV) and Pi?) appearing in (3.6) are now considered 

as functions of the strained co-ordinate xo and are obtained by solving the 
differential equations which are obtained when (3.6) and (3.7) are substituted 
into (3.1)-(3.3) and coefficients of like order in EB and AP are equated. 

dP(O)/dx, = - 12&(0), ( 3 . 8 ~ )  To zeroth order : 

(3.8b) 

dQ'O)/dx0 = 0. ( 3 . 8 ~ )  
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To first order in ER: 

12Qi1), 
dPil) dx, dP(O) ----=- 
ax, dx, ax, 

( 3 . 9 ~ )  

(3.9c) 

To first order in AP: 

( 3 . 1 0 ~ )  

(3.1 Oc) 

Equations (3.8), (3.9) and (3.10) each constitute a system of six ordinary dif- 
ferential equations: three for the range 0 < x < L, and three for the range 
L, < x < L, whose total order is eight. The eight unknown integration constants 
aredeterminedforeachofthesystems (3.8), (3.9)and (3.10)bythe eight boundary 
and matching conditions that are obtained by substituting (3.6) and (3.7) into 
(3.5) and equating coefficients of each power of eR and AP. The boundary con- 
ditions for the lowest order set of equations, equations (3.8), are homogeneous 
for P and inhomogeneous for C,, assuming AC is of O( l), while for the first-order 
set (3.9) the boundary conditions on both P and C, are homogeneous. For the 
first-order set (3.10) the pressure boundary condition is inhomogeneous since it 
introduces the filtration pressure differential AP. With this ordering the total 
contributions to the water flux Q from osmosis, active transport and filtration 
can be of comparable magnitude. 

For each higher order system one has to solve an auxiliary second-order 
differential equation for the co-ordinate straining functions xi in the two regions 
0 < x < L, and& < x < L. The differential equations for x1 and x2 are determined 
by suppressing the undesirable growth that results from the inhomogeneous 
terms in (3.9b) and (3 .10b) .  These terms lead tosolutionsfor C!') and C$) which 
exhibit a monotonically increasing algebraic growth for values of x 9 1, and 
consequently a divergence of the series (3.6) for large x. To suppress this secular 
behaviour one requires instead that (74,) and CP) should satisfy the homogeneous 
equations 

-- -0, -- d2CA1' - 0 for 0 < x, < Lo, and Lo, < x, < Lo, (3.11 a) 
a2cp 

ax; ax; 

which are obtained by making the unknown functions x1 and x2 in (3.9b) and 
(3.10b) obey 
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where Lo represents the value of the x, co-ordinate a t  the channel exit. The 
boundary and matching conditions for the unknown functions x, and x2 are 
to some extent arbitrary. At xo= Los, the source location in the strained co- 
ordinate system, i t  is reasonable to require that the strained co-ordinate be 
continuous and that the compatibility condition ( 3 . 5 4  be satisfied to first order 
in eR and AP: 

Xl(L&) = X l ( G L  X,(L,) = xz(~o+s), (3.12 a) 

Equations (3.11 b )  are of second order and thus permit the specification of two 
additional conditions. For compatability with (3.2) and (3.5b) we must have 

and for convenience we choose 

X,(O) = X 2 ( O )  = 0. (3.12 e )  

For Cl1) and C!jl) to be zero for all x, and to satisfy (3.1 1 a) ,  Cl‘) and CP) must obey 
homogeneous boundary and matching conditions. The first-order conditions de- 
rived from (3.5b,e,f) a,nd (3.12b) c) will satisfy this homogeneity requirement 
provided that 

dC& - -! ax, xo=L,-, -! ax, xo=L& 

in (3.12b)c). In  this manner the undesirable growth of the dependent variables 
is eliminated through the co-ordinate straining functions. With the conditions 
(3.12) we are not free to specify the values of x, at the secretory site and a t  the 
channel exit; these are determined from a solution of the two simultaneous 
equations which are obtained when x = L, and x = L in (3.7). These equations, 
which are implicit algebraic relations for Lo, and Lo, must be solved numerically. 

The zeroth-order volume flux gradient dQ(0)/dxo vanishes by ( 3 . 8 ~ )  and the 
zeroth-order pressure gradient dP(O)/dx, vanishes after solving (3.8 a, c) with 
appropriate boundary conditions. The first-order pressure and volume flux 
gradients in ( 3 . 9 ~ )  c) and ( 3 . 1 0 ~ ’  c) are then independent of the co-ordinate 
straining as represented by dx,/dx, and dx2/dxo, and depend only on the zeroth- 
order concentration solution. However, the co-ordinate straining does enter 
into the second-order volume flux corrections Q 9 L  and pressure corrections P$:S, 
which are derived from (3.2) and (3.3). 

To order and (AP)2 
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Zeroth-order solution. The solution of (3.8) and the associated boundary and 

P(0) = P(O), Q(0) = 0, (3.14a,b) 
matching conditions are 

C @ ) =  -+ 1-- 8 x,+C(O) (0 < xo< Lo& K ( 2) I ( 3 . 1 4 ~ )  

x,+C(O)+~L,, (Aos < x,  < Lo). (3.14d) 

The lowest order solution thus involves no convective transport. This solution 
is simply a linear variation in concentration due to solute diffusion between two 
specified end states, with a discontinuity in solute concentration gradient at the 
secretory site location x, = Lo, whose magnitude is proportional to the source 
strength 8. This basic behaviour is clearly suggested by the curves in figure 7 
below. 

SoIutiontofirstorderineR. Tosolve(3.9) wefirstintegrate (3.9c)for 0 < x,, < L, 
and Lo, < xo < Lo using (3.14). The integration constants in the resulting ex- 
pressions for Qil) cannot be evaluated directly since they are related to the pressure 
boundary conditions. The expressions for QI1) are therefore substituted in (3.9a). 
The integral of ( 3 . 9 ~ ~ )  leads to two relations for .Pi1) valid for 0 < x,  < Los and 
Lo, < x, < Lo with four unknown constants. The latter are evaluated by applying 
the four appropriate first-order boundary and matching conditions that are 
derived from (3.5a, c, g, h). The desired expressions for Qil) and Pi1) valid in each 
region are 

QI1) = alxg + 2(C(O) - 1)  x, + a3 (0 < x, < Lo,), (3.15 a) 

= a2x~+2(C(0)+XL,,-1)x,+cc, (Lo, < x, c Lo), (3.15 b )  

(3.156) Pi1’ = - 12[4al.:+(C(o)- l)x;+a,x,] (0 < x, < Lo,), 
Pi1) = - 1 2 [ ~ ~ ~ ~ + ( C ( 0 ) + S L O s - 1 ) ~ ~ + ~ p ~ O ]  (Los < X, < Lo), (3.15d) 

where a, = AC/L, + (1 - L,,/L,) 8, (az = a1 - X), 
013 = - (1 - Lo,/LO) (SIR + &SL,,( 2L0 - Lo,) - (C(0) + +AC - 1) Lo, 

a4 = a3 i- S/R - SL&. 

Note that the first-order boundary-value problems for the pressure and water 
flux have been uncoupled from that for the concentration field. Equations (3.15 a) 
and (3.15b) are the first-order approximations for the convective fluxes that 
would be produced in a channel with passive water movement due to local 
osmosis a t  its lateral boundariee and no transmembrane pressure differential 
and is based on the lowest order solution for the concentration distribution (3.14). 
The pressure distribution (3.15c, d )  is the passively induced pressure field created 
by the local osmosis. 

In  view of (3.14b), (3.11b) reduces to an inhomogeneous second-order dif- 
ferential equation for x1 alone: 

(3.16) 

32 
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where C(0) and Q!') are given by (3.14c, d )  and (3.15a, b )  respectively. The in- 
tegration of (3.16) in the two regions 0 < x, < L, and Lo, < x, < Lo introduces 
a total of four unknown constants. These constants are evaluated by applying 
the four first-order boundary and matching conditions associated with (3.12). 
The final results are 

(0 < x, < Los), ( 3 . 1 7 ~ ~ )  

where 

ZC(0) (C(0) - 1) 2(C(O) +SL,) (G(0) +SLos- 1) S L& 
a2 - R 2  -1 

+ [-,- 
Solution to j r s t  order in AP. The solutions to (3.10) are obtained in a manner 

exactly analogous to that used to obtain the results to first order in eR, After 
integration and application of appropriate boundary and matching conditions 
we obtain 

&$' = - 1/12L0, Pp' = xo/L,. (3.  M a ,  b )  

The straining function is found to be 

( 3 . 1 9 ~ )  

The solutions to second order in ( E R ) ~  are obtained by using the results (3.15) 
and (3.17) in (3.13) and applying the appropriate second-order boundary and 
matching conditions from (3.5). The detailed results are contained in Goldgraben 
(1972). 

The approximate analytic solutions given above will be compared with the 
exact solutions of (2.22)-(2.25) in 8 5 for circumstances in which AP = 0. 
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4. Results for closed extracellular channels 
The boundary-value problem for extracellular channels with impermeable 

junctional complexes a t  the luminal end x = 0, for example, the gall bladder 
geometry shown in figure 1, is readily converted into an initial-value problem 
in which equations (2.22), (2.23) and (2.25) are integrated numerically. Cm and 
its derivatives are related to C, and its derivatives by the algebraic relation 
(2.24). Since U,(O) = 0, dC,(O)/dx = 0 and the initial reference pressure is 
arbitrary, only one initial condition, the dimensionless initial concentration 
C,(O), is left unspecified. In  both DB and Segel (1970) C,(O) is uniquely de- 
termined by requiring that C, = 1. However, for reasons stated earlier this 
isotonic exit condition is an artificial one. C,( 1) can have any value, depending 
on the mixing process that occurs between the channel effluent and the outer 
bathing solution. The boundary condition for determining C,(O) is more 
properly applied at  infinity, where the solution is collected and the concentration 
uniform. This equilibrium concentration is given by C, = QJQ. 

To examine the entire spectrum of possible behaviour, C,(O) will be treated 
as a free parameter in the present study. In  particular we shall want to see if it 
is possible within the framework of the local standing-gradient osmotic model 
as presently formulated to have both a channel concentration which is hypotonic 
relative to the cell interior solution and a vanishing concentration gradient a t  
the exit station. As discussed in 9 1,  both conditions appear to be necessary if 
the water in the cell interior is to be replenished from the lumen with the channel 
effluent and outer bathing solution both still being isotonic relative to the 
lumenal fluid. 

The unexpected result in figure 4 (a)  is that concentration in the channel does 
not automatically relax to the concentration in the cell interior as the perfusion 
length for passive water movement increases. One observes that there is only one 
initial solute concentration C, a t  x = 0 that permits C, to approach unity 
asymptotically with vanishing gradient a t  large values of x. The dashed curve 
in figure 4 representing this unique solution curve separates two families of 
solutions with distinctly different behaviour. For C,(O) > C,,, curves 1-3 in 
figure 4 (a), C,, eventually grows without bound for large values of x and leads 
to a monotonically increasing water flux in the channel. For C,(O) < C,, curves 4 
and 5 in figure 4 (a) ,  C, decays monotonically towards zero for increasing values 
of x. Once C, < 1.0 water diffuses back into the cell interior and a reversal in 
flow direction will occur if the channel is sufficiently long, as shown by curve 5 
of figure 4(b) .  One notes from figure 4 that only solutions of the type of curves 4 
and 5 are possible if the exit boundary condition C,(L) = 1 is imposed as in DB 
and Segel. The solution curves for other values of 7, E and R in the range of 
interest for epithelial membranes all exhibit the same qualitative behaviour as 
that shown in figure 4. Varying these dimensionless groups simply alters the 
value of C, and changes the decay rate of the neutral (dashed) curve. 

We next wish to interpret these results in the context of Diamond's (1964) 
experiments. If the effluent is to be isotonic with a well stirred outer bathing 
solution whose dimensionless far-field concentration is C, then the channel flow 

32-2 
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FIGURE 4. Effect of C,,(O) on (a )  the distribution of solute concentration and ( b )  volume 
flux in a closed extracellular channel with the secretory site located in 0 < x < 50. 
E = 0-872 x = 0.135 x 10-6, R = 0.116 x lop3. --- 9 C 09.. 

must reach the exit with both C,(L) = C, and dC,(L)/dx = 0, or further mixing 
would ensue a t  the channel exit. It is evident from figure 4(a) that when 
C,(L) = C, = 1 only the dashed curve for the infinitely long channel satisfies 
both exit boundary conditions. Other solutions with a vanishing gradient at the 
channel exit are possible for finite-length channels. These solutions are repre- 
sented by the curves of the upper family in figure 4(a)  where the channel exit 
is located at  the minima, dC,/dx = 0. Thus, if L = 625 then curve 3 terminated 
at  x = 625 would represent such a solution. These solutions all correspond to 
an outer bathing solution which is hypertonic relative to the cell interior, that 
is C, = C,(L) > 1. No mention has yet been made of the concentration of the 
lumenal fluid, however, if the water in the cell interior is to be replenished from 
the lumen, as is widely assumed, then the lumenal fluid must be hypotonic 
relative to the cell interior. This is the basic paradox of the standing-gradient 
model in the explanation of isotonic transport in the gall bladder. The solution 
in the cell interior, assuming homogeneity of cell water activity, obviously cannot 
a t  the same time be isotonic or hypotonic with respect to the outer bathing 
solution and hypertonic relative to the lwnenal solution if these two bathing 
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solutions are isotonic. Also, there are no values of C,(O) which allow the curves 
of the lower family in figure 4 (a)  to have a minimum with C, < 1.. It would 
appear that basic modifications of the existing mathematical formulation are 
necessary if the conditions for both isotonic transport and water replenishment 
are to be explained using the local standing-gradient osmotic concept for gall 
bladder epithelial transport. 

The question as to how long a channel would be required for the channel 
flow to nearly equilibrate with the solution in the cell interior has been examined 
in detail in DB and Segel (i970).  While such equilibration (C,(L) = 1 and 
dC,(L)/dz = 0) cannot be exactly achieved for any finite-Iength channel, these 
investigators have demonstrated that, provided the solution curves are of the 
type 4 or 5 in figure 4, the equilibration can be approached to within a few per cent 
for estimatedvalues of 7, e, R and L that are reasonable for gall bladder epithelium. 

5. Results for porous extracellular channels 
The initial-value problem for open and partially occluded extracellular channels 

with active transport is somewhat more difficult to handle numerically than 
the closed channel geometry just considered. In the case of channels completely 
occluded at  one end, both Urn and the concentration gradient dC8,/dx at the 
initial station are zero. Only the initial concentration C,(O) is unknown. All 
three initial conditions are unknown in open channel systems. The two additional 
unknown initial conditions Urn(0) and dC,(O)/dx are related to the pressure dif- 
ference AP = P(L) - P( 0 )  and concentration difference AC, = C,(L) - C,( 0 )  
across the channel, see boundary conditions (3.5f, 9) .  Thus, to integrate (2.22),  
(2.23) and (2.25) numerically trial values of Urn(0) and dC,(O)/dx had to be 
assumed and a variant of a steepest-descent iteration routine used to satisfy the 
split-end-point boundary conditions on pressure and concentration. Solutions 
were assumed to have converged to the desired accuracy when the prescribed 
values of AP and AC, were satisfied to five significant digits. 

To understand the essential features of the operation of an open channel with 
active transport and pressure filtration we first consider an idealized constant- 
area channel with a secretory site centred symmetrically between the channel 
ends, which are at  the same concentration as the cell interior, see figure 5. Curve 1 
in figure 5(u)  and curve 1 in figure 5 ( b )  show the variation of dimensionless 
pressure P and volume flux Q when there is no applied pressure differential AP 
across the end stations. Water that enters the channel passively owing to local 
osmosis divides at  the centre into two equal and oppositely directed flows. Since 
both Q and the concentration gradient vanish at the channel centre-line because 
of symmetry, the flux conditions a t  the symmetry plane of the channel are the 
same as those at the initial station of a tight-junction channel. Curves 2-4 in 
figures 5 (a )  and (b )  show the effect of applying a monotonically increasing pressure 
differential across the membrane. An increase in the hydrodynamic pressure a t  
the left-hand end over that at the right, with AC, = 0, will cause the locations 
at which Q = 0 to move to the left as shown in figure 5 ( b ) .  This position of the 
stagnation plane (i.e. Q = 0)  is also the plane of maximum pressure, see equation 
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FIUIJRE 5. Effect of pressure filtration on the distributions of (a) pressure, (6) volume flux 
and (G) solute concentration in an open-geometry channel with secretory site located in 
450<x< 550. E = 0.872 x 7 = 0.269 x lop6, R = 0.116 x C8,,,(0) = C,,(1000) = 1.0. 

(2.25). There is a critical applied pressure differential, see curve 3 of figure 5 (a), 
when the filtra<tion pressure is just sufficient to move the stagnation plane to 
the left-hand end of the channel and thereby balance the water flux due to the 
local osmosis. A further increase in the applied pressure differential (curve 4 
in figures 5 (a) and ( b ) )  results in unidirectional flow along the entire channel. 

Figure 5 ( c )  shows the nonlinear effect of convection on the streamwise con- 
centration distribution produced by increasing the filtration pressure AP &cross 
the channel. Non-dimensional filtration pressures of O( 1) are typical of epithelial 
cell layers such as the ciliary body. The total passive water movement due to 
the local osmosis produced by the active transport is directly proportional to 
the total area under the concentration curve. We therefore conclude from figure 
5 (c) that the concentration distribution is not significantly aItered by convection 
and hence that the driving forces due to active transport and pressure filtration 
are essentially independent for epithelial cell layers. Thus the channel efflux &(L) 
is linearly related to AP and 7, the dimensionless secretory site strength. This 
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FIGURE 6. Effect of AP and 7 on the shift of stagnation plane in an open-geometry channel 
with secretory site located in 450 < x < 550. E = 0-872 x 7 = 0.269 x 
R = 0 . 1 1 6 ~  G,,(O) = C,,(lOOO) = 1.0. 

linear relation between membrane fluxes and driving forces is the fundamental 
simplifying hypothesis used in the irreversible thermodynamics theory of 
membrane transport and is also the basis for the perturbation expansions (3.6) 
used here. Cl') and Cf) in (3.6) can be viewed as the lowest order convective 
corrections to the linear theory. 

Figure 6 shows the effect of varying the secretory site strength (value of 7) 
on the movement of the stagnation plane for a symmetric channel. The 
7 = 0.269 x curve is obtained from the intersections with Q = 0 axis of the 
curves in figure 5 ( b ) .  Increasing the secretory site strength is equivalent to 
increasing the local osmotic effect and thus results in a smaller stagnation plane 
shift for constant AP. The interesting feature of these curves is that the movement 
of the stagnation plane is a highly nonlinear function of AP although, as just 
noted, epithelial membranes function in a region where all fluxes and driving 
forces are Iinearly related. The local value of &(x) is linearly related to AP, but 
unlike the flux at the channel exit &(L), it is a nonlinear function of position since 
the local integrated area under the concentration curve, and hence the local 
integrated passive water movement due to local osmosis, varies nonlinearly with 
position. The location of the stagnation plane is determined by the balance 
between the filtration flux and the integrated passive water movement due to 
local osmosis between the active transport site and the stagnation plane. On 
the other hand, the critical value of AP required to shift the stagnation plane 
to the channel entrance, the intersection of the curves in figure 6 with the AP 
axis, is almost linearly proportional to 7. This is a result of the fact that the total 
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FIGURE 8. Effect of location of the centre of the seeretory site on (a) the volume fluxes 
and ( b )  the mass fluxes at  the end stations of an open-geometry channel with AP = ACaW = 0, 
secretory site length = 100, E = 0.872 x 7 = 0-269 x R = 0.116 x 

area under the concentration curve, and hence the total local osmotic flux, is 
independent of AP if the nonlinear effects of convection can be neglected. 

Figures 7 (a ) ,  (b)  and (c) show the effect of applying an osmotic driving force 
AC, across a membrane with active transport, but no transmembrane pressure 
differential. The total passive water movement is the same for each set of curves 
and again the secretory site is located symmetrically between the end stations. 
These curves provide a convenient test of the accuracy of the approximate 
analytical solutions presented in Q 3. For the numerical solutions the secretory 
site had a finite length equal to two per cent of the channel length whereas in the 
analytic solutions it is treated as a point source. The discontinuity in Q a t  the 
secretory site for the analytic curves is due to the active transport of salt and is 
the EX term in the matching condition ( 3 . 5 ~ ) .  The concentration curves in 
figure 7 (a)  show the nearly linear diffusion dominated behaviour predicted by 
the lowest order analytic solutions (3.14 c) and (3.14 d )  . The analytic volume 
flux curves in figure 7(b )  are the solutions (3 .15~)  and (3.15b), in which the 
relationship between x and the strained co-ordinate x,, is obtained from (3.7), 
(3.17a) and (3.17b). The curves in figure 7 (c)  show the effect of an osmotic driving 
force on the pressure distribution in the channel with AP maintained at zero. 
The osmotic driving force has basically redistributed the fluxes Q(0) and Q(L) 
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FIGURE 9. Effect of secretory site location on the solute concentration distribution in an 
open-geometry channel with AP = ACsw = 0 and constant passive water flux. 
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to the two end stations, while their sum is a constant since the total passive 
water movement is held fixed. 

In  figures 8(a) and (b) and 9 we examine the effect of secretory site location 
on the water and solute fluxes a t  the channel entrance and exit and on the 
concentration distribution in the channel. The only driving force is active 
transport. The total passive water movement into the channel is again held 
constant. Thus the area under each of the curves in figure 9 is the same. The 
interesting feature is that distribution of the solute fluxes to the two end stations 
is a much more sensitive function of secretory site location than that for the 
water fluxes. The salt fluxes a t  the channel entrance and exit depend principally 
on the diffusional gradient at  the end stations established by the concentration 
profile and, therefore, vary significantly with secretory site location, see figure 9 
or equations (3.14c, d) .  On the other hand, the distribution of the water flux a t  
the channel ends is primarily controlled by the filtration pressure differential 
and not the concentration distribution. One recalls from figure 7 (c) that changes 
of O(1) in the concentration profile produced relatively small changes in the 
pressure distribution provided AP = 0. 

Figures 5-9 are based on hypothetical open channel geometries and boundary 
conditions in which we have examined separately the effects of the various 
driving forces and the secretory site location on the water and solute flux 
distributions within the channel. In  figures 10 (a )  and ( b )  these various elements 
have been combined in an attempt to model quantitatively a real membrane, 
the rabbit ciliary body epithelium. This membrane has been selected since there 
exists a detailed set of experimental measurements (Cole 1961, 1962) which can 
be used to assess the validity of the theoretical model. These include measure- 
ments of the exit volume and solute fluxes and the active transport componen6 
of the solute flux for rabbit ciliary body epithelia both in vivo and when excised. 
The values predicted theoretically for these fluxes could be extrapolated to a 
reasonable accuracy from the results for a single channel using the measured 
total area of the membrane and an estimate of the average cell and channel 
dimensions. These dimensions were obtained from observation of high resolution 
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FIGURE 10. Effect of AP and q on (a) the exit volume flux and ( b )  the exit mass flux in 
an open-geometry channel with the secretory site located in 690 < x < 790. L = 925, 
E = 0.872 x R = 0.0156. Point (i) indicates Cole's in vitro experimental data, point (ii) 
an estimate of in vivo flux with no filtration and point (iii) Cole's in vivo experimental data. 

electronmicrographs ; these same observations gave an average dimensionless 
channel length L = 925. 

Por excised preparations Cole found that the exit volume and solute fluxes were 
equivalent, respectively, to &(L) = 0.173 x and &,(L) = 0.155 x low3. The 
latter value was based on the measured short-circuit current, that is the equiva- 
lent electron current measured when a low resistance shunt is placed across the 
membrane and the transmembrane potential difference reduced to zero. These 
data points are labelled (i) in figures lO(a) and ( b )  and, since AP = 0, lie on the 
verticaI axis. The in vivo value of AP is the pressure difference between the 
intraocular pressure and the blood diastolic pressure in the capillary bed. For the 
eye in vivo Cole obtained values equivalent to 

Q(L) = 0.9 x 10-3, Q,(L) = 0.91 x 10-3, 
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and from the short-circuit current an active transport component of 
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It is to be noted that both the volume and solute fluxes measured in vivo were 
more than five times greater than those in the excised preparation, while the 
active transport component increased by less than a factor of 2 .  This intriguing 
behaviour is one of the fundamental unanswered questions in ciliary body 
transport. 

The curves in figures lO(a) and (b)  represent the theoretical solutions for the 
exit volume and solute fluxes in a channel with active transport and pressure 
filtration but isotonic end stations. The secretory site was centred at  x = 740, 
which places it at the beginning of the apical infoldings of the non-pigmented 
cell layer, see figure 2; this is the location suggested by histochemical studies of 
Na + K-ion-dependent ATPase activity. The ion pump strength 7 is treated as 
a fixed parameter and is determined by the experimentally measured short- 
circuit current. The appropriate 7 curve corresponding to Cole’s in vitro (AP = 0) 
experiments with the excised eye is shown as point (i) in figure 10 ( b ) .  This value 
of 7 is 0.182 x 10-7; e is measured similarly. Only the parameter R of the three 
dimensionless groups 7, e and R is not accurately known. To circumvent this 
difficulty R was chosen by curve fitting one of the three experimental points in 
figure lO(a) for the volume flux, namely point (iii). Thus, two of the six ex- 
perimental pointsin figures 10 (a)  and (b )  are used to determine the free parameters 
in the governing equations, while the remaining four points are a true test of 
the theoretical model. To obtain the theoretically predicted volume flux the 
intersection of the 7 = 0.182 x 10-8 curve with the AP = 0 axis is located in 
figure lO(a). The predicted value &(L) = 0.142 x is within 20 % of the 
measured volume flux &(L) = 0.173 x In  view of the uncertainty in the 
dimensionless group R, the neglect of electrical effects and other model refine- 
ments this agreement between theory and experiment is satisfactory. 

The in vivo results cannot be compared directly with the in vitro data but 
must first be corrected for the increased active transport that results from the 
increased metabolism. It is evident, however, from the curves in figure 10 that 
for the prescribed values of 7, e and R the fluxes and driving forces are linearly 
related. Thus, the active transport component of the total volume flux in the 
living eye, Q(L) when AP = 0, can be determined by assuming a linear relation 
between the in vitro and in vivo short-circuit current measurements and the 
corresponding in vitro volume flux. Q(L) with AP = 0 for the eye in vivo is 
shown as point (ii) in figure lO(a) and has the value 0.313 x The new value 
of 7 corresponding to the increased active transport rate is, therefore, about 
0.4 x 10-7. Since 7 remains constant, the experimentally measured volume flux 
&(L) = 0.9 x point (iii) in figure lO(a), is achieved for a dimensionless 
interstitial-iiitraocular pressure differential AP = - 6-6, the minus sign appearing 
because of the direction in which the pressure difference is measured. In  dimen- 
sional units this AP is equivalent to SOmmHg, which when corrected for the 
small osmolarity differences between blood plasma and aqueous humour gives 
an equivalent AP of approximately 50-60 mm Hg. Returning to figure 10 (b)  we 
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note that the theoretical predictions for the exit solute flux for 7 = 0.4 x are 
Q,(L) = 0-94 x for AP = - 6.6 and that Q,(L) = 0.33 x 10-8 when AP = 0, 
corresponding to the theoretically predicted active transport component. The 
corresponding experimentally measured values, points (iii) and (ii) respectively, 
are &(L) = 0.91 x and Q,(L) = 0.28 x lW3, the latter being based on the 
short-circuit current measurement. Both values are obviously in as close an 
agreement with the theory as one is justified to expect considering the sophistica- 
tion of the quantitative model. 

I n  summary, the theoretical model predicts that the marked increase in fluid 
transport in the living rabbit eye compared with that in the dead rabbit eye is 
due to the hydrostatic pressure difference between the blood and the aqueous 
humour. These results when combined with the earlier experiments of Davson 
(1953), which showed that p .  amino hippinate M.W. 194 and raffinose M.W. 594 
could pass with equal facility through the ciliary body epithelium, and Langham’s 
(1958, 1959) intraocular pressure experiments with cat’s eyes provide cogent 
evidence that the extracellular channels in the ciliary process are open and provide 
the transport route for the observed water and solute movement. I n  contrast to 
previous qualitative models, which attributed the bulk water movement solely 
to active transport, the present quantitative model shows that the formation of 
aqueous humour is a pressure-dependent mechanism and that the ion pumps are 
responsible for only about one-third of the total water movement. Results not 
shown indicate that this active transport fraction is even less for eat’s eyes, 
where it accounts for about one-tenth of the total flux. 

6. Partial occlusions 
The results of $3 3 , 4  and 5 have been confined to constant-height extracellular 

channels. However, as noted in 3 1, electron micrographs of the ciliary body 
epithelium clearly indicate localized regions in which the channel is partially 
occluded. In  this section we shall briefly consider the effect of such constrictions 
on the streamwise pressure and concentration distribution within the channel. 
To simplify the analysis we shall assume that there is no active solute transport 
in the obstructed region and that on the length scale 1 of the obstruction the 
passive movement of water across the lateral boundaries can be neglected. We 
shall assume in addition that the inertial forces within the occlusion are small 
compared with the viscous forces, that the normal component of the momentum 
equation can be neglected and that the concentration varies only as a function 
of z, the instantaneous mixing hypothesis invoked in 3 3. 

Introducing the simplifications outlined in the last paragraph, impermeable 
lateral boundaries and a uniform concentration profile, equations (2.22) and 
(2.23) become 

a d  
3 ax 
-- (U,h) = 0, 

--(UmhCS)-&kz) 2 a  d dC, = 0. 
3 dx 
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Substituting (6.1) into (6.2) and using ( 2 . 2 6 ~ )  gives 
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One integration of this equation gives 

where II: = 0 here refers to the beginning of the occlusion, S(0) = dC8(0)/dx is the 
initial concentration gradient and Q is a constant in view of (2.26) and (6.1). A 
second integration yields the final result: 

The streamwise variation in pressure is obtained from an integration of (2.25), 
which gives 

P(x)  - P(0)  = - 1 2 Q j ; g .  (6.6) 

Solutions (6.5) and (6.6) are particularly useful in that they apply to an arbitrarily 
varying channel height h(x). Equation (6.6) is a well-known result in lubrication 
theory. 

One convenient form for h(x), which is representative of a typical occlusion 
geometry, is the sinusoidal variation 

(6.7) 

which is sketched in the upper left-hand corner of figure 11. Equation (6.7) 
describes a one-parameter family of constriction geometries which depend only 
on the ratio of throat to initial area ht/h(0). 

h (~) /h(O)  = 1 - $( 1 - h,/h(O)) (1 - cos 277~/Z), 

Substituting (6.7) into (6.5) and integrating across the constriction yields 

If (6.8) is now divided by the concentration differential across a uniform section 
of channel with the same length, initial height and concentration gradient, we 
have 

AC, exp (&ZK/h(O)) - 1 

AC, 
-= 

exp (&Z/h(O)) - 1 ’ 
where K = h( O)/h,, and AC, and AC, represent the concentration differentials for 
a constricted and unconstricted channel respectively. Similarly substitution of 
(6.7) in (6.6) gives 

P(Z)-P(0) = AP, = 3(QZ/h(0)3) (3K5+2K3+3K).  

If this result is now divided by the Poiseuille pressure drop AP, across a constant- 
area channel with the same volume flux &, length I and initial height h(0) we 
obtain 

AP,/AP, = QK5 + &K3 + 8K. (6.10) 
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FIGURE 11. Effect of a partial occlusion on the streamwise pressure and 
concentration gradient across an open-geometry channel. 

The solution for ACc/ACu depends on two dimensionless groups, &l/h(O) and K, 
whereas APJAP, depends only on K .  This is not surprising since the convective 
terms are omitted in the momentum equation (2.25) but are retained in the 
solute conservation equation (6.2). In  the limit as this convective contribution 
vanishes, &Z/h(O) -+ 0 and ACJAC, in (6.9) becomes a function of K only, as can 
be observed from figure 1 I. 

Equations (6.9) and (6.10) have been plotted in figure 11. Since the pressure 
gradient in a uniform channel is constant the ratio AP,/APu can be interpreted 
as the ratio of the length of a uniform channel required to produce a pressure 
drop equalling that across the occluded zone to the length of the occluded zone. 
The constriction also produces an increased concentration differential; however, 
this effect is much less pronounced than that for the pressure field for the same 
value of h(O)/h, provided that &Z/h(O) < O(1). For constrictions typical of the 
ciliary body epithelium, we anticipate results very close to the limiting behaviour 
for &Z/h(O) = 0. 

Equation (6.8) can also be used to show the importance of convection in a 
constant-area channel. To derive this condition we set h(0)/ht = 1 in (6.8) and 
divide by the linear concentration drop AC+, = X(0) L that would occur in 
a purely diffusive channel (& = 0) of length L: 

For &L/h(O) < 1 the ratio in (6.11) is given approximately by 

(6.11) 
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The deviation from the purely diffusive solution as predicted by (6.11) or (6.12) 
is underestimated since the passive water movement at  the lateral boundaries 
is neglected. These results clearly show that even if Q < 1 convective effects will 
eventually become important if the channel is sufficiently long for &L/h(O) to 
be 2 O(1). This, of course, is the motivation behind the use of the co-ordinate 
straining technique employed in 3 3. 
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